The first draft of the human genome was published 15 years ago. And since then, scientists have scoured its three billion-odd letters for clues to cancer’s origins.

To carry out this biological text-analysis, researchers have employed virtually every method of manipulating DNA they can get their hands on, learning a huge amount along the way. They’ve torn out pages, spell-checked lines, written in the margins of cellular history, and stuck bits back in – all in the hope of understanding how genes work and, crucially, how they can go wrong.

But to do this scientists have relied on some imperfect, albeit vital, lab tools, which can be expensive and labour-intensive. And this has meant that entire research groups have often been limited to studying single genes.

VAdd to this the fact that many cancers’ root cause lies in combinations of multiple faulty genes, and it’s clear there’s a long way to go. While the previous generation of gene editing techniques have helped scientists document many chapters of cancer’s history, it’s fair to say the ink would also sometimes run, or glued pages might slip.

So the precise function of many genes – and, importantly, how they collude with others in cancer – has been left unclear and smudged.

We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…